4.0W单声道、超低EMI、无滤波器D类音频功放

概要

CS8121S是一款高效率,超低EMI,4.0W单声道 D 类音频放大器。CS8121S无需滤波器的PWM调制结构减少了外部元件、PCB面积和系统成本,而且也简化了设计。高达90%的效率,快速的启动时间和纤小的封装尺寸使得CS8121S成为小型手上设备和PDA的最佳选择。

CS8121S的全差分架构和极高的PSRR有效地提高了CS8121S对RF噪声的抑制能力,并且省去了传统音频功放的BYPASS电容。

CS8121S采用独创的AERC(Adaptive Edge Rate Control)技术能提供优异的全带宽EMI抑制能力,在不加任何辅助设计时,在FCC Part15 Class B标准下仍然具有超过20dB的裕量,特别适合FM、CMMB、手机模拟电视等易受EMI干扰的应用。

CS8121S内置了过流保护,短路保护和过热保护,有效的保护芯片在异常的工作条件下不被损坏。

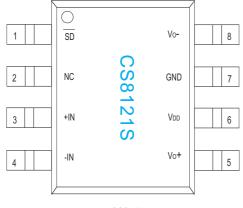
CS8121S提供了纤小的封装形式可供客户选择,其额定的工作温度范围为-40℃至85℃。

封装

- SOP8L
- 其他客户要求的封装类型

描述

輸出功率

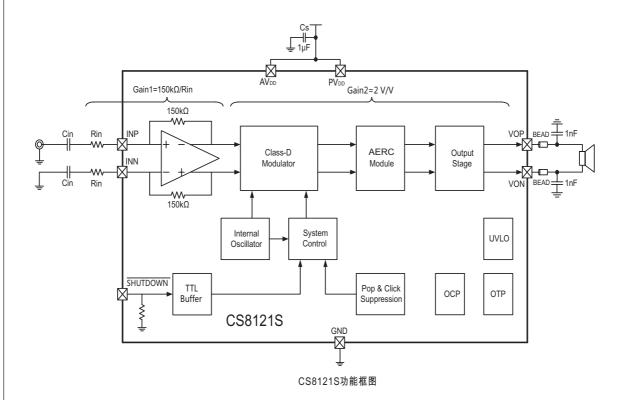

PO at 10% THD+N, VDD = 6V RL = 8Ω 2.33W(典型值) RL = 4Ω 4.0W(典型值) PO at 1% THD+N, VDD = 3.6V RL = 8Ω 0.70W(典型值) RL = 4Ω 1.25W(典型值)

- 独创的AERC技术,提供优异的全带宽EMI抑制能力
- · 优异的"噼噗-咔嗒"(pop-noise)杂音抑制能力
- 工作电压范围: 2.5V到6.5V
- · 无需滤波的Class-D结构
- 高达90%的效率
- 高的电源抑制比(PSRR): 在217Hz下为-80dB
- 快速的启动时间 (40ms)
- 低静态电流 (3mA)
- 低关断电流 (<0.1μA)
- 过流保护,短路保护和过热保护
- 符合Rohs标准的无铅封装

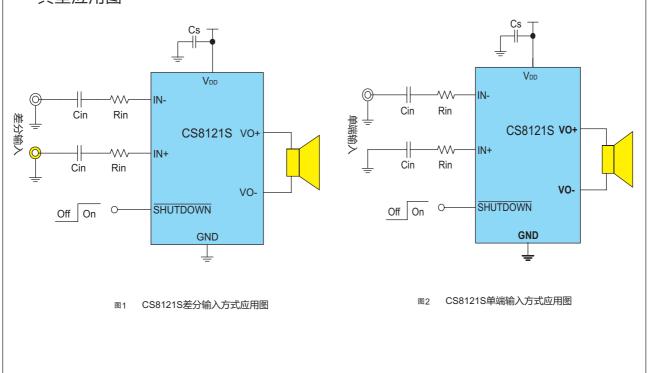
应用:

- USB音箱/便携式音箱
- PMP/MP4/MP5播放器
- GPS

引脚分布


SOP_8L (Top View)

引脚定义以及功能


序号	符号	描述	
1	SD	关断控制	
2	NC	无连接	
3	+IN	正相音频输入	
4	-IN	反相音频输入	
5	VO+	正相音频输出	
6	V _{DD}	模拟电源输入	
7	GND	地	
8 VO-		反相音频输出	

Jul,2011 Rev.1.0

功能框图

典型应用图

极限参数表1

参数	描述	数值	单位
V_{DD}	无信号输入时供电电源	6.5	V
V _I	输入电压	-0.3 to VDD+0.3	V
Тј	结工作温度范围	-40 to 150	°C
T _{SDR}	引脚温度(焊接10秒)	260	℃
T _{STG}	存储温度范围	-65 to 150	℃

推荐工作环境

参数	描述	数值	单位
V _{DD}	输入电压	2.5~6.5	V
TA	环境温度范围	-40~85	°C
Tj		-40~125	°C

热效应信息

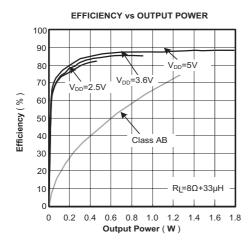
参数	描述	数值	单位
$\theta_{JA}\!(SOP8)$	封装热阻芯片到环境热阻	190	°C/W
$\theta_{Jc}(SOP8)$	封装热阻芯片到封装表面热阻	35	°C/W

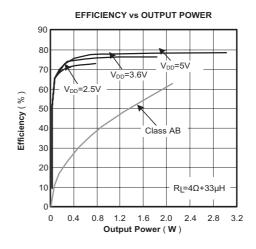
订购信息

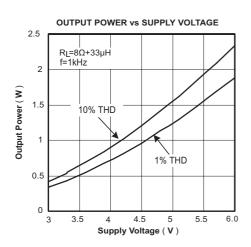
产品型号	封装形式	器件标识	包装类型	数量
CS8121SM	SOP-8L	8121S XXXX	管装	100 units

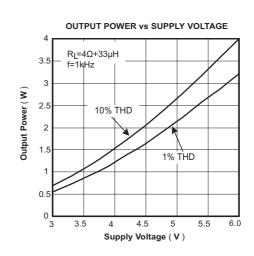
ESD 范围

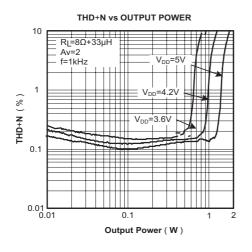
1. 上述参数仅仅是器件工作的极限值,不建议器件的工作条件超过此极限值,否则会对器件的可靠性及寿命产生影响,甚至造成永久性损坏。

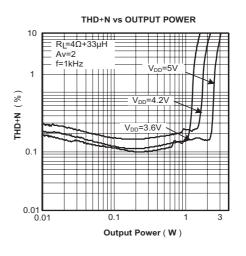

电气参数 T_A=25°C (除非特殊说明)

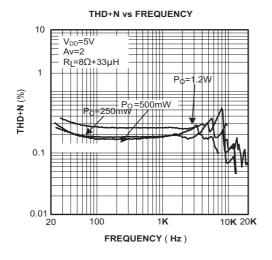

参数	描述	测试条件	最小	典型值	最大	单位	
IVool	输出失调电压	VIN=0V, Av=2V/V VDD=2.5V to 6.0V		5	25	mV	
PSRR	电源抑制比	V _{DD} =2.5V to 6.0V,217Hz		-80		dB	
CMRR	共模抑制比	输入管脚短接, V _{DD} =2.5V to 6.0V		-70		dB	
I _{IH}	高电平输入电流	V_{DD} =6.0V, V_{I} = V_{DD}			50	μ A	
I _{IL}	低电平输入电流	$V_{DD}=6.0 \text{ V}, V_{I}=0 \text{ V}$		5		μΑ	
	静态电流	VDD=6.0V,无负载,无滤波		3.6		- mA	
I _{DD}		VDD=3.6V,无负载,无滤波		2.5		IIIA	
I _{SD}	关断电流			0.1		μА	
_	\r\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V _{DD} =5.5V		260		mΩ	
r _{DS(ON)}	源漏导通电阻	V _{DD} =3.6V		330			
	关断状态下输出阻抗	V _(SHUTDOWN) =0.35V		2		ΚΩ	
f _(SW)	调制频率	VDD=2.7V to 5.5V		750		Khz	
Gain	放大倍数			2× 150kg Rin	Ω	V/V	
Rsp	SHUTDOWN 引脚下拉电阻			230		ΚΩ	

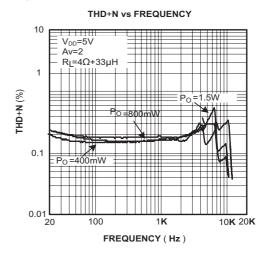

工作特性 T_A=25°C,Gain = 2 V/V, RL = 8 Ω (除非特殊说明)

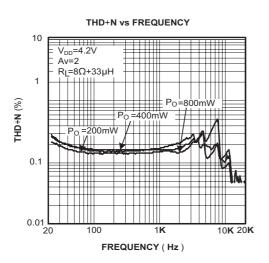

参数	描述	测试条件	最小	典型	最大	单位
		V _{DD} =6.0V,THD=10%,f=1KHz,RL=4Ω	,f=1KHz,RL=4Ω			
		VDD=6.0V,THD=1%, $f=1KHz,RL=4\Omega$		3.30		
		$V_{DD}=6.0V,THD=10\%,f=1KHz,RL=8\Omega$		1.95		
		V_{DD} =6.0 V , THD =1 $\%$, f =1 KHz , RL =8 $Ω$		2.33		1
		$V_{DD}=5.0V,THD=10\%,f=1KHz,RL=4\Omega$		2.90		1
Po	输出功率	V _{DD} =5.0V,THD=1%, f=1KHz,RL=4 Ω		2.50		W
		V _{DD} =5.0V,THD=10%,f=1KHz,RL=8Ω		1.66		1
		$V_{DD}=5.0V,THD=1\%$, $f=1KHz,RL=8\Omega$		1.36		
		V _{DD} =3.6V,THD=10%,f=1KHz,RL=4Ω		1.70		1
		VDD=3.6V,THD=1%, $f=1KHz,RL=4\Omega$		1.20		
		V _{DD} =3.6V,THD=10%,f=1KHz,RL=8Ω		0.80		1
		V_{DD} =3.6 V , THD =1 $\%$, f =1 KHz , RL =8 $Ω$		0.62		1
		$V_{DD}=5.0V, Po=0.6W, f=1KHz, RL=8\Omega$		0.11		
THD+N	总谐波失真+噪声	V _{DD} =4.2V,Po=0.4W, f=1KHz,RL=8Ω		0.16		%
		$V_{DD}=3.6V, Po=0.4W, f=1KHz, RL=8\Omega$		0.15		
η	效率	$V_{DD} = 5.0 V, Po = 0.6 W, \ f = 1 KHz, RL = 8 \Omega$		90		%
t st	启动时间			40		ms

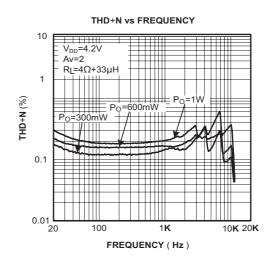

典型特征曲线 $T_{A=25^{\circ}C,Gain} = 2 \text{ V/V}, RL = 8 \Omega \text{ (除非特殊说明)}$

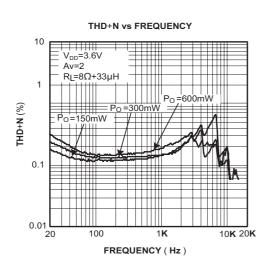


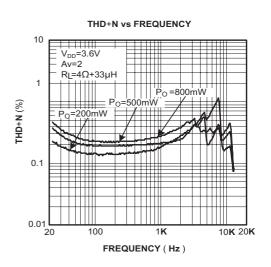


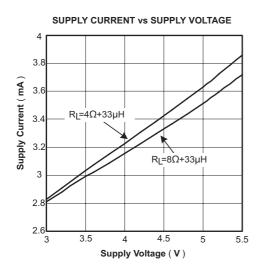


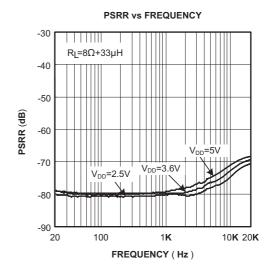


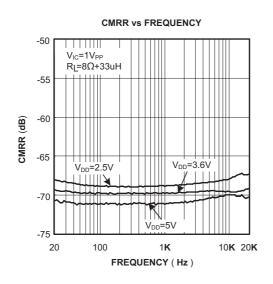



典型特征曲线 TA=25°C, Gain = 2 V/V, RL = 8 Ω (除非特殊说明)

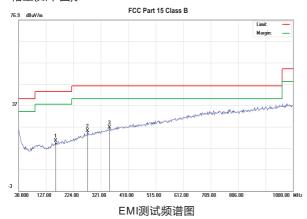








典型特征曲线 Ta=25°C, Gain = 2 V/V, RL = 8 Ω (除非特殊说明)



产品特性

CS8121S系列是一款超低EMI,4.0W,单声道,D类音频功率放大器。在6V电源下,能够向4 Ω 负载提供3.0W的输出功率,并具有高达90%的效率。

CS8121S采用 专有的 AERC((Adaptive Edge Rate Control)技术,在音频全带宽范围内极大地降低了EMI的干扰,对60cm的音频线,在FCC的标准下具有超过20dB的裕量(如下图)。

CS8121S无需滤波器的PWM调制结构减少了外部元件数目,PCB面积和系统成本,并且简化了设计。芯片内置了过流保护,过热保护盒欠压保护功能,这些功能保证了芯片在异常的工作条件下关断芯片,有效地保护了芯片不被损坏,当异常条件消除后,CS8121S有自恢复功能可以让芯片重新工作。

效率

输出晶体管的开关工作方式决定了D类放大器的高效率。在 D 类放大器重,输出晶体管就像是一个电流调整开关,切换过程中消耗的额外功率基本可以忽略不计。输出级相关的功率损耗主要是由MOSFET导通电阻与电源电流产生的I²R。CS8121S系列的效率可达90%。

无需滤波器

CS8121S系列采用无需滤波器的PWM调制方式,省去了传统D类放大器的LC滤波器,提高了效率,为便携式设备的音频子系统提供了一个更小面积,更低成本的实现方案。

Pop & Click抑制

CS8121S系列内置专有的时序控制电路,实现全面的Pop & Click抑制,可以有效地消除系统在上电,下点,Wake up和 Shutdown操作时可能会出现的瞬态噪声。

保护电路

CS8121S系列在应用的过程中,当芯片发生输出管脚和电源或地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,CS8121S自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,CS8121S可以继续正常工作。当电源电压过低时,芯片也将被关断电源电压恢复后芯片会再

应用信息

去耦电容 (Cs)

CS8121S是一款高性能 D 类音频放大器,电源端需要加适当的电源供电去耦电容来确保其高效率和最佳的总谐波失真。同时为得到良好的高频瞬态性能,希望电容的ESR值要尽量的小一般选择典型值为1uF的电容旁路到地。去耦电容在布局上应该尽可能的靠近芯片的Voo放置。把去耦电容放在与CS8121S较近的地方对于提高D类放大器的效率非常重要。因为器件和电容间的任何电阻或自感都会导致效率的降低。如果希望更好的滤掉低频噪音,则需要根据具体应用添加一个10uF或者更大的去耦电容。

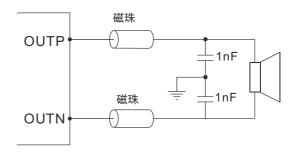
输入电阻(Rin)

通过设定输入电阻可以设定系统的放大倍数,如下式:

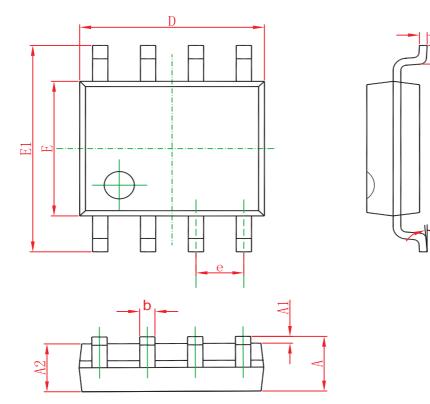
Gain =
$$\frac{2 \times 150 \,\mathrm{k}\Omega}{\mathrm{Rin}}$$
 $(\frac{\mathrm{V}}{\mathrm{V}})$

两 个 输 入 电 阻 之 间 的 良 好 匹 配 对 提 升 芯 片 PSRR,CMRR以及THD等性能都有帮助,因此要求使用精度为1%的电阻。PCB布局时,电子应紧靠CS8121S放置,可以防止噪声从高阻结点的引入。

输入电容(Cin)


输入电阻和输入电容之间构成了一个高通滤波器,其截 止频率如下式:

$$f_{c} = \frac{1}{(2\pi R_{in}C_{in})}$$


输入电容的值非常重要,一般认为它直接影响着电路的低频性能。无线电话中的喇叭对于低频信号通常不能很好的响应,可以在应用中选取比较大的fc以滤除217HZ噪声引入的干扰。电容之间良好的匹配对提升芯片的整体性能和Pop & Click的抑制都有帮助,因此要求选取精度为10%或者更小的电容.

磁珠和电容

CS8121S在没有磁珠和电容的情况下,对于60cm的音频线,仍可满足FCC标准的要求。在输出音频线过长或器件布局靠近EMI敏感设备时,建议使用磁珠,电容。磁珠和电容要尽量靠近CS8121S放置。

封装信息 CS8121S SOP_8L

Cymbal	Dimensions In Millimeters		Dimensions In	Inches
Symbol	Min	Max	Min	Max
А	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.270	0(BSC) 0.050(BSC)		D(BSC)
L	0.400	1.270	0.016	0.050
θ	° 0 ° 8	° 0 ° 8		

(1) 所有尺寸都为毫米