

STA510F

44-V, 5.5-A, quad power half-bridge

Features

- Minimum input/output pulse width distortion
- 150 mΩ R_{dsON} complementary DMOS output stage
- CMOS compatible logic inputs
- Thermal protection
- Thermal warning output
- Undervoltage protection
- No power-on, power-off sequence required

Description

The STA510F is a monolithic, quad, half-bridge stage in multipower BCD technology. The device can be used as dual-bridge or reconfigured, by connecting the CONFIG pin to the Vdd pin, as single-bridge with double current capability, and as half-bridge (binary mode) with half current capability.

Table 1. Device summary

The device is particularly designed to make the output stage of a stereo all-digital high-efficiency (FFX) amplifier capable of delivering 100 W + 100 W output power into 8- Ω loads with THD = 10% and V_{cc} = 39 V. In single BTL configuration the device can deliver 200 W into a 4- Ω load with THD = 10% and V_{cc} = 39 V.

The device is fully compatible with the $\text{DDX}^{\textcircled{R}}$ driver device.

The input pins have a threshold proportional to $\ensuremath{V_L}$ pin voltage.

Order code	Operating temp. range	Package	Packing
STA510F	0° to 70° C	PowerSSO36 (slug up)	Tube
STA510FTR	0° to 70° C	PowerSSO36 (slug up)	Tape & Reel

Figure 1. Typical application

September 2011

Doc ID 14268 Rev 3

1/11

TEL:0755-82863877 13242913995 E-MAIL:panxia168@126.com http://www.szczkjgs.com

1 Pin description

Table 2. Pin list

Pin	Name	Description
1	GND-SUB	Substrate ground
2, 3	OUT2B	Output half-bridge 2B
4	Vcc2B	Positive supply
5	GND2B	Negative supply
6	GND2A	Negative supply
7	Vcc2A	Positive supply
8, 9	OUT2A	Output half-bridge 2A
10, 11	OUT1B	Output half-bridge 1B
12	Vcc1B	Positive supply
13	GND1B	Negative supply
14	GND1A	Negative supply
15	Vcc1A	Positive supply
16, 17	OUT1A	Output half-bridge 1A

Pin	Name	Description
18	NC	Not connected
19	GND-clean	Logical ground
20	GND-Reg	Ground for regulator Vdd
21, 22	Vdd	5-V regulator referred to ground
23	VL	High logical state setting voltage
24	CONFIG	Configuration
25	PWRDN	Standby
26	TRI-STATE	Hi-Z
27	FAULT	Fault pin advisor
28	TH-WAR	Thermal warning advisor
29	IN1A	Input of half-bridge 1A
30	IN1B	Input of half-bridge 1B
31	IN2A	Input of half-bridge 2A
32	IN2B	Input of half-bridge 2B
33, 34	Vss	5-V regulator referred to +Vcc
35, 36	VCCSIGN	Signal positive supply

Table 2.Pin list (continued)

Table 3. Pin values

Pin	Logical value	Device status		
FAULT ⁽¹⁾	0	Fault detected (short-circuit, or thermal)		
	1	Normal operation		
TRI-STATE	0	All power stages in Hi-Z state		
TRI-STATE	1	Normal operation		
PWRDN	0	Low-power mode		
	1	Normal operation		
THWAR ⁽¹⁾	0	Temperature of the IC = 130° C		
	1	Normal operation		
	0	Normal operation		
CONFIG ⁽²⁾	1	OUT1A = OUT1B, OUT2A = OUT2B (IF IN1A = IN1B and IN2A = IN2B)		

1. The pin is open collector. To have the high logic value, it needs a pull-up resistor.

2. CONFIG = 1 means connect pin 24 (CONFIG) to pins 21, 22 (Vdd).

2 Electrical specifications

2.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage (pin 4, 7, 12, 15)	44	V
V _{max}	Maximum voltage on pins 23 to 32	5.5	V
ESD	Max ESD on pins (HBM)	±1000	V
T _{op}	Operating temperature range	0 to 70	° C
T _{stg} , T _j	Storage and junction temperature	-40 to 150	° C

2.2 Thermal data

Table 5.Thermal data

Symbol	Parameter	Min	Тур	Max	Unit
T _{j-case}	Thermal resistance junction to case (thermal pad)		1	2.5	°C/W
T _{jSD}	Thermal shut-down junction temperature		150		° C
T _{warn}	Thermal warning temperature		130		° C
t _{hSD}	Thermal shutdown hysteresis		25		° C

2.3 Electrical specifications

The results in *Table 6* below are given for the conditions: $V_L = 3.3$ V, Vcc = 37 V and $T = 25^{\circ}$ C unless otherwise specified.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _{dsON}	Power Pchannel/Nchannel MOSFET RdsON	ld = 1 A		150	200	mΩ
I _{dss}	Power Pchannel/Nchannel leakage current				100	μA
9 _N	Power Pchannel RdsON matching	Id = 1 A	95			%
9 _P	Power Nchannel RdsON matching	Id = 1 A	95			%
Dt_s	Low current deadtime (static)	see test circuit Figure 3		10	20	ns
Dt_d	High current deadtime (dynamic)	L = 22 μ H, C = 470 nF, R _L = 8 Ω , Id = 4.5 A, see test circuit <i>Figure 4</i>			50	ns
t _{d ON}	Turn-on delay time	Resistive load			100	ns

Table 6. Electrical specifications

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t _{d OFF}	Turn-off delay time	Resistive load			100	ns
t _r	Rise time	Resistive load, as Figure 4			25	ns
t _f	Fall time	Resistive load, as Figure 4			25	ns
V _{CC}	Supply voltage operating voltage		10		40	V
V _{IN-High}	High level input voltage		V _L /2 + 300mV			v
V _{IN-Low}	Low level input voltage				V _L /2 – 300mV	v
I _{IN-H}	High level input current	Pin voltage = V _L		1		μA
I _{IN-L}	Low level input current	Pin voltage = 0.3 V		1		μA
I _{PWRDN-H}	High level PWRDN pin input current	V _L = 3.3 V		35		μA
V _{Low}	Low logical state voltage (pins PWRDN, TRISTATE) (see Table 7)	V _L = 3.3 V			0.8	v
V _{High}	High logical state voltage (pins PWRDN, TRISTATE) (see <i>Table 7</i>)	V _L = 3.3 V	1.7			v
I _{VCC-} PWRDN	Supply current from Vcc in power down	PWRDN = 0			3	mA
I _{FAULT}	Output current pins FAULT -TH-WARN when FAULT CONDITIONS	Vpin = 3.3 V		1		mA
I _{VCC-hiz}	Supply current from Vcc in tri-state	Pin TRI-STATE = 0		22		mA
I _{VCC}	Supply current from Vcc in operation both channel switching)	Input pulse width duty cycle = 50%, switching frequency = 384 kHz, no LC filters;		70		mA
I _{OUT-SH}	Overcurrent protection threshold Isc (short-circuit current limit)		5.5	7	9	A
V _{UV}	Undervoltage protection threshold			7		V
t _{pw_min}	Output minimum pulse width	No load	25		40	ns

 Table 6.
 Electrical specifications (continued)

VL	V _{Low} max	– V _{High} min	Unit
2.7	0.7	1.5	V
3.3	0.8	1.7	V
5	0.85	1.85	V

Table 7. V_{low}, V_{high} threshold variation with V_L

Table 8.Logic truth table

TRI-STATE	INxA	INxB	Q1	Q2	Q3	Q4	Output mode
0	x	x	OFF	OFF	OFF	OFF	Hi-Z
1	0	0	OFF	OFF	ON	ON	DUMP
1	0	1	OFF	ON	ON	OFF	NEGATIVE
1	1	0	ON	OFF	OFF	ON	POSITIVE
1	1	1	ON	ON	OFF	OFF	Not used

Figure 3. Test circuit for low current deadtime

Figure 4. Test circuit for high current deadtime

Figure 6. Typical driving configuration with STA309A

57

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4 Trademarks and other acknowledgements

FFX is a STMicroelectronics proprietary digital modulation technology. DDX is a registered trademark of Apogee Technology, Inc. ECOPACK is a registered trademark of STMicroelectronics.

5 Revision history

Date	Revision	Changes
13-Dec-2007	1	Initial release.
28-Jun-2011	2	Added part number STA510FTR to <i>Table 1: Device summary</i> Updated ECOPACK [®] text in <i>Section 3: Package information</i> Minor textual updates
02-Sep-2011	3	Updated package to PowerSSO36 throughout datasheet Corrected typographical error in <i>Features</i> Updated <i>Figure 1: Typical application</i> Updated <i>Figure 2: Pin connections (top view)</i> Updated <i>Figure 6: Typical driving configuration with STA309A</i> Updated <i>Figure 7: PowerSSO36 package dimensions</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 14268 Rev 3