DMOS Microstepping Driver with Translator and Overcurrent Protection

描述

HR4985是一种便于使用的内部集成了译码器的微步进电机驱动器。其设计为使双极步进电机能够以全、半、1/4和1/8步进操作。步进模式由逻辑输入MSx选择。输出驱动能力达到35V和±1A。HR4985包括一个能够控制慢或混合衰减模式的电流调节器,其截止时间固定。

译码器是HR4985易于实施的关键。通过STEP简单的输入一个脉冲就可以使电机完成一次步进,省去了相序表,高频控制线及复杂的编程接口。这使其更适于应用在没有复杂的微处理器或微处理器负担过重的场合。

在步进操作期间,HR4985的内部电路可以自动的控制其PWM操作工作在快、慢及混合衰减模式。在混合衰减模式下,器件初始经过一段时间的快衰减后,将切换至慢衰减模式直至固定截止时间结束。混合衰减模式控制不但降低了电机工作时产生的噪声,还增加了步进的准确性,同时减小了系统的功耗。

内部的同步整流控制电路改善了PWM操作时的功耗。 内部保护电路包括:利用迟滞实现的过热关机、欠压锁 定及交叉电流保护。不需要特别的加电排序。

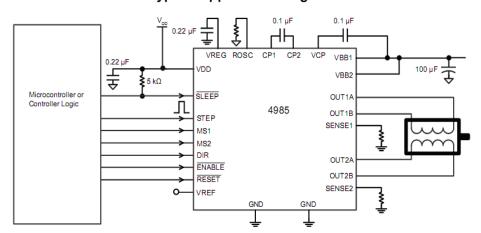
HR4985目前提供一种贴片封装: 带有裸露焊盘的 QFN-24封装, 能有效改善散热性能, 且是无铅产品, 引脚框采用100%雾锡电镀。

型号选择

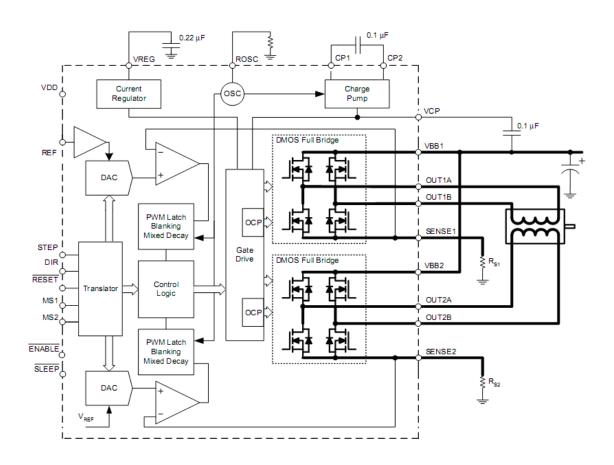
Part Number	Package
HR4985	QFN24 with exposed thermal pad

特点

- ●低输出阻抗R_{DS(ON)}
- ●自动电流衰减检测并选择混合、快和慢等电流 衰减模式
- ●降低功耗的同步整流功能
- ●内部欠压锁定
- ●交叉电流保护
- ●3.3V和5V兼容逻辑电平
- ●QFN封装
- ●过热关断电路
- ●对地短路保护
- ●负载短路保护
- ●低电流睡眠模式, <10uA


封装形式

24-contact QFN with exposed thermal pad 4 mm × 4 mm × 0.75 mm



Typical Application Diagram

Functional Block Diagram

电路工作极限 at Ta = 25°C

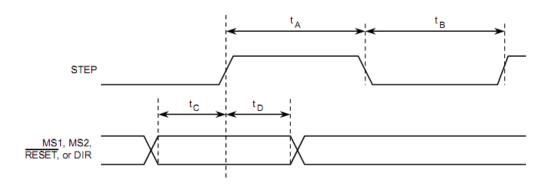
Parameter	Symbol	Conditions	Ratings	Unit
Load Supply Voltage	V_{BB}		35	V
Output Current	I _{OUT}		±1	Α
Logic Input voltage	V _{IN}		-0.3 to 5.5	V
Logic Supply voltage	V_{DD}		-0.3 to 5.5	V
Motor Output Votage			-2.0 to 37	V
Sense Voltage	V _{SENSE}		-0.5 to 0.5	V
Reference Voltage	V_{REF}		5.5	V
Operating Ambient Temperature	T _A	Range S	-20 to 85	°C
Maximum Junction	T _J (max)		150	°C
Storage Temperature	T _{stg}		-55 to 150	°C

DMOS Microstepping Driver with Translator and Overcurrent Protection

电特性 ¹ at Ta = 25°C, V_{BB}= 35 V

Parameter	Symbol	Conditions	Min	Typ ²	Max	Unit
Output Drivers					1	
Load Supply Voltage Range	\/	Operating	8	-	35	V
	V _{BB}	During Sleep Mode	0	-	35	V
Logic Supply Voltage Range	V_{DD}	Operating	3.0	-	5.5	V
Output On Resistance	D	Source Driver,I _{OUT} =-800mA		700	900	mΩ
	R _{DS(ON)}	Sink Driver, I _{OUT} =800mA		700	900	mΩ
Body Diode Forward Voltage	V _F	Source Diode,I _F =-800mA			1.3	V
	VF	Sink Diode, I _F =800mA			1.3	V
Motor Supply Current		f _{PWM} <50kHz			4	mA
	I _{BB}	Operating, outputs disabled			2	mA
		Sleep Mode			10	uA
Logic Supply Current		f _{PWM} <50kHz			8	mA
	I _{DD}	Operating,outputs disabled			5	mA
		Sleep Mode			10	uA
Control Logic						
Logic Input Voltage	V _{IN(1)}		V _{DD} *0.7			V
	V _{IN(0)}				V _{DD} *0.3	V
Logic Input Current	I _{IN(1)}	$V_{IN}=V_{DD}\times0.7$	-20	<1.0	20	uA
	I _{IN(0)}	$V_{IN}=V_{DD}\times0.3$	-20	<1.0	20	uA
Microstep Select	R _{MS1}		-	100	-	kΩ
	R _{MS2}		-	50	-	kΩ
Logic Input Hysteresis	V _{HYS(IN)}	As a % of V_{DD}	5	11	19	%
Blank Time	t _{BLANK}		0.7	1	1.3	us
Fixed Off-Time	to	OSC=VDD or GND	20	30	40	us
	t _{OFF}	R_{OSC} =25 $k\Omega$	23	30	37	us
Reference Input Voltage Range	V_{REF}		0	1	4	V
Reference Input Current	I _{REF}		-3	0	3	uA
Current Trip-Level Error ³		$V_{REF}=2V,\%I_{TripMAX}=38.27\%$	-	ı	±15	%
	errı	V_{REF} =2 V ,% $I_{TripMAX}$ =70.71%	-	1	±5	%
		$V_{REF}=2V,\%I_{TripMAX}=100\%$	-	-	±5	%
Crossover Dead Time	t _{DT}		100	475	800	ns
Protection						
Overcurren Protection Threshold ⁴	I _{OCPST}		1.1	-	-	Α
Thermal Shutdown Temperature	T _{TSD}		-	150	-	°C
Thermal Shutdown Hysteresis	T _{TSDHYS}		-	15	-	°C
VDD Undervoltage Lockout	V _{DDUVLO}	V_{DD} rising	2.7	2.8	2.9	V
VDD Undervoltage Hysteresis	V _{DDUVLOHYS}		-	90	-	mV

¹ FOR input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.


² Typical data are for initial design estimationsonly, and assume optimum manufacturing and application conditions. Performancemay vary for individualunits, within the specified maximum and minimum limits.

 $^{3\} V_{ERR} = [(V_{REF}/8) - V_{SENSE}]/(V_{REF}/8)$

⁴ Over current protection(OCP) is tested at T_A =25°C in a restricted range and guaranteed by characterization.

电路控制信号时序上的要求:

 $(T_A = +25\,^{\circ}\!\!\mathrm{C}\,,\, V_{DD} = 5$ V, Logic Levels are V_{DD} and Ground)

Time Duration	Symbol	Тур.	Unit
STEP minimum, HIGH pulse width	t _A	1	μs
STEP minimum, LOW pulse width	t _B	1	μs
Setup time, input change to STEP	t _C	200	ns
Hold time, input change to STEP	t _D	200	ns

Figure 1. Logic Interface Timing Diagram

Table 1. Microstep Resolution Truth Table

MS1	MS2	Microstep Resolution	Excitation Mode
L	L	Full Step	2 Phase
Н	L	Half Step	1-2 Phase
L	Н	Quarter Step	W1-2 Phase
Н	Н	Eighth Step	2W1-2 Phase

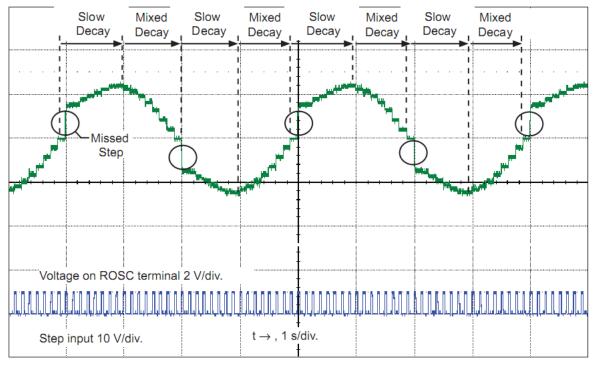


Figure 2. Missed steps in low-speed microstepping

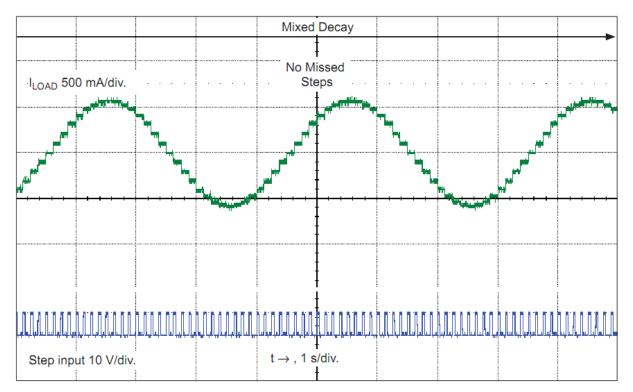


Figure 3. Continuous stepping using automatically-selected mixed stepping (ROSC pin grounded)

模块功能描述

器件工作: HR4985是一种便于使用的内部集成了译码器的微步进电机驱动器,只需少量的控制线。 其设计能够让双极步进电机以全、半、1/4和1/8步进操作。每一个H桥都有一个有固定截止时间的PWM电流控制电路,以限制其N沟道DMOS功率管的负载电流在一个设计值。每个步进的全桥输出电流是由外部检流电阻(RS1和RS2)的值,参考电压(V_{RE})和DAC(依次由译码器的输出控制)的输出电压来设定。

在上电或复位时,译码器将DAC和相电流的极性设为初始的Home状态(如图8~11所示),且两相的电流稳压器均工作在混合衰减模式。当一个步进信号进入STEP端口,译码器自动将DAC排序进入下一电平和电流极性。(表2给出了电流台阶顺序)。微步细分精度由MS1和MS2输入组合确定,如表1所示。

当步进进行时,如果DAC的输出电平低于前一个输出电平,则当前的H全桥进入混合衰减模式。如果DAC输出电平高于或者等于前一个电平,则当前的H全桥进入慢衰减模式。自动的电流衰减选择通过减小电流波形失真改善了微步进性能,其产生原因是电机的反电动势。

微步进选择(MS1 和 MS2): 微步细分精度由 MS1 和 MS2 逻辑输入电压确定,如表 1 所示。MS1 有一个 100kΩ的下拉电阻,MS2 有一个 50kΩ的下拉电阻。当改变步进模式时,直到下一个 STEP 的上升沿才起作用。

如果步进模式被改变,而译码器没有复位,则绝对位置保持不变。在一个两种步进模式共同的步进位置改变步进模式很重要,这是为了防止丢步。当器件断电或者由于过温重启或过流时,译码器被置于 home 位置,这是所有步进模式默认的共同位置。

混合衰减操作: 当上电复位后正常工作时,根据 ROSC 的配置和步进顺序, H 桥工作于混合衰减模式, 如图 8~11 所示。在混合衰减期间, 当达到预定值时, HR4985 初始进入快衰模式,衰减时间占固定截止时间 toff 的 31.25%。其后转为慢衰直至固定截止时间结束。时序框图在图 7 中呈现。

一般混合衰减只是在绕组中的电流从一个高的 值变为一个低的值时需要,由译码器的设置决定。对 大多数负载来说,混合衰减模式的自动选择很便利, 因为能够减小电流上升时的纹波和防止电流下降时的丢步。特别是在一些非常低速的微步进应用中十分必要,绕组中反电动势的不足造成负载中的电流增加很快,导致丢步。如图 2 所示。通过将 ROSC 管脚接地,混合衰减在 100%的时间内起作用,无论电流上升或者下降,同时防止丢步,如图 3 所示。如果不存在丢步问题,也推荐使用自动选择混合衰减模式,因为其会减小电流纹波。详细描述请参考固定截止时间一节。

低电流微步进:在某些应用中,过短的导通时间使得输出电流无法调节到编程好的低电流步进。为了防止这种现象,器件可以在电流波形的上升和下降两个方向都工作在混合衰减模式。这是通过将 ROSC 管脚接地实现的。

上电输入 (nRESET): RESET 输入 (低电位有效) 使得 TRANSLATOR 恢复初始状态 (如图 8~11 所示),关断所有 DMOS 输出,HOME 输出变为低电平,此时 STEP 输入无效,直到 RESET 冲洗变为高电平为止。

STEP 输入: STEP 信号高电平触发有效,通过 TRANSLATOR 控制,每个 STEP 高电平触发使得电机有一个步进的变化。TRANSLATOR 控制 DAC 的输入和流过马达线圈的电流方向;每一步进的电流大小和转动角度由 MS1 和 MS2 输入逻辑电平控制。

方向控制(DIR): DIR 输入控制马达的转动方向,在 STEP 信号上升沿触发到来之前,任何 DIR 上的变动都对电路不产生影响;

内部 PWM 电流控制:每一个 H 桥都有一个有固定截止时间的 PWM 电流控制电路,以限制其负载电流在一个设计值, I_{TRIP}。初始时,对角线上的一对源接收 DMOS (一对上下桥臂) 处于输出状态,电流流经电机绕组和 SENCE 脚所接的电流取样电阻, R_{Sx}。当取样电阻上的压降等于 DAC 的输出电压时,电流取样比较器将 PWM 锁存器复位,从而关断源驱动器 (上桥臂),进入慢衰减模式;或同时关断源接收驱动器 (上下桥臂)进入快或混合衰减模式,使产生环流或电流回流至源端。该环流或回流将持续衰减至固定截止时间结束为止。然后,正确的输出桥臂被再次启动,电机绕组电流再次增加,整个 PWM 循环完成。其中,最大限流是由取样电阻 RSx 和电流取样比较器的输入

电平 VREF 控制的, ITrioMAX (A) 由下式决定:

 $I_{\text{TripMAX}} = VREF / (8 \times Rs)$

每步的实际电流为最大电流的百分比,近似为:

 $I_{\text{Ttip}} = (\%I_{\text{TtipMax}}/100) I_{\text{TripMax}}$

(表 2 给出了每步的最大电流百分比) 注意: SENSE 脚上的最大电压不能超过 0.5V。

固定衰減时间 toff: 内部 PWM 控制电路是用一个脉冲来控制器件的持续截止时间的。截止时间 toff 是由 ROSC 引脚决定的。ROSC 引脚有三种设置,即:

- ●ROSC 接 VDD一截止时间初始设为 30us, 衰减模式为自动选择的混合衰减模式,除了全步模式下衰减模式为慢衰减。
- ●ROSC 接地一截止时间初始设为 30us,对所有模式的上升和下降电流步进,衰减模式为自动选择的混合衰减模式。 建议直接使用此方法设计外围电路。
- ●ROSC 接对地的电阻一截止时间由下面的公式决定,对所有步进模式,衰减模式为自动选择的混合衰减模式。

$t_{\text{OFF}} \cong R_{\text{OSC}}/825$

消隐(Blanking): 当输出在内部电流控制电路作用下开关时,该功能屏蔽电流检测比较器的输出,防止由于钳位二极管反向恢复电流,以及负载电容的开关瞬态电流导致的错误的过流检测。屏蔽时间,tblank(us),近似为 1us。

电荷泵 (CP1 和 CP2): 电荷泵用来生成一个高于 VBB 的电压,去驱动输出高端 DMOS 的栅。一个0.1uF 的陶瓷电容接在 CP1、CP2 之间,实现泵电荷的目的。一个0.1uF 陶瓷电容接在 VCP、VBB 之间,用来存储电荷,去驱动高端 DMOS 器件。

电容值需为 Class2 介质, $\pm 15\%$ 最大 R 波动,根据 EIA。

VREG: 电路内部产生的基准电压,用于低端门级驱动的 DMOS 电源。VREG 外部必须通过一个

0. 22uF 电容耦合到地。VREG 作为内部电路的一个监视器,当内部 VREG 没有正常工作时,DMOS 器件输出被禁止。

使能输入(nENABLE): 该输入控制所有 FET 输出的开关。当其为逻辑高电平时,输出关断。当其 为逻辑低电平时,内部控制使能起作用。译码器输入 STEP, DIR, MS1 和 MS2, 以及内部时序逻辑, 全部有效, 独立于 nENABLE 输入。

SHUTDOWN 关断: 当电路发生过温保护或者发生 VCP 的欠压闭锁时,SHUTDOWN 功能正常工作,此时电路的正常功能被禁止,直到电路脱离 SHUTDOWN 条件。在电路上电过程中,VDD 电压还没有达到电压阈值时,VDD 的欠压闭锁电路使输出 DMOS电路全部关断,HOME 输出被设置为初始状态。

休眠模式(nSLEEP): 当 SLEEP 引脚输入为低电平时,器件将进入休眠模式,从而大大降低器件空闲的功耗。进入休眠模式后器件的大部分内部电路包括 DMOS 输出电路、调节器及电荷泵等都将停止工作。当其输入翻转为高电平时,系统恢复到正常的操作状态并将器件的输出预置到 HOME 状态,为了内部电荷泵恢复稳定工作,在 SLEEP 恢复高电平并延时 1ms后 STEP 信号才能起作用。

混合衰减操作: 当上电复位后正常工作时,根据 ROSC 的配置和步进顺序,H 桥工作于混合衰减模式,如图 8~11 所示。在混合衰减期间,当达到预定值时,HR4985 初始进入快衰模式,衰减时间占固定截止时间 toff 的 31.25%。其后转为慢衰直至固定截止时间结束。时序框图在下页图中呈现。

同步整流控制(SR): 同步整流控制是由 SR 的逻辑输入控制的。当 SR 输入为低电平时,同步整流功能将被启动。此期间,当检测到电流为零值时,可通过关闭同步整流功能来防止负载电流反向,从而防止了电机绕组反方向导通。而当 SR 输入为高电平时,同步整流将被禁止。

Page 7 of 17

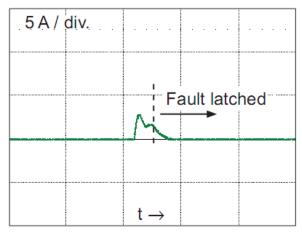


Figure 4. Short-to-ground event

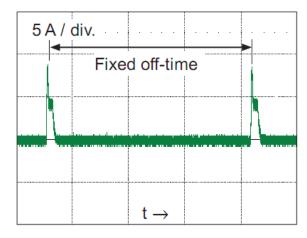


Figure 5. Shorted load (OUTxA \rightarrow OUTxB) in Slow decay mode

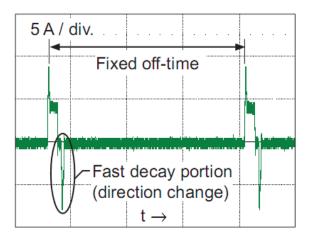
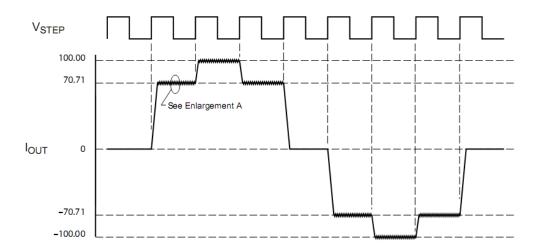
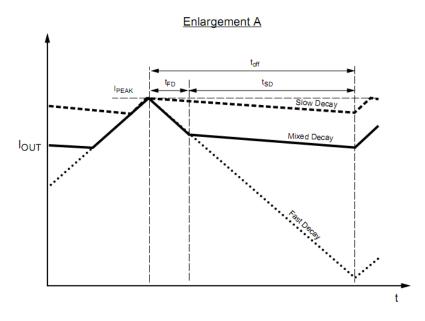




Figure 6. Shorted load (OUTxA \rightarrow OUTxB) in Mixed decay mode

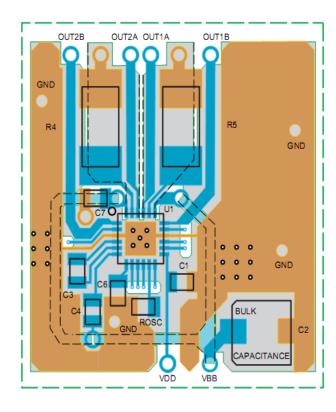
Page 8 of 17

Symbol	Characteristic	
t _{off}	Device fixed off-time	
I _{PEAK}	Maximum output current	
t _{SD}	Slow decay interval	
t _{FD}	Fast decay interval	
l _{out}	Device output current	

Figure 7. Current Decay Modes Timing Chart

电路应用信息

版图注意事项: PCB 板上应覆设大块的散热 片,地线的连接应有很宽的地线覆线。为了优化 电路的电特性和热参数性能,芯片应该直接紧贴 在散热片上。

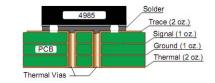

对电极电源 VBB,应该连接不小于 47uF 的电解电容对地耦合,电容应尽可能的靠近器件摆放。

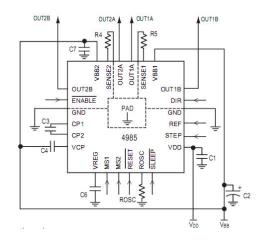
为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。

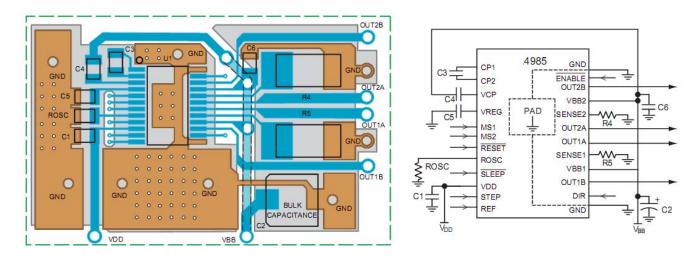
逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

地线设置: AGND 和 PGND 的连线必须在芯片外部短接。所有的地线都应连接在一起,且连线还应改尽可能的短。一个位于器件下的星状发散的地线覆设,将是一个优化的设计。

在覆设的地线下方增加一个铜散热片会更好的优化电路性能。

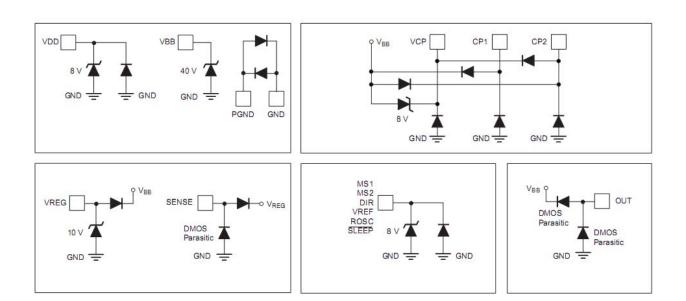



电流取样设置: 为了减小因为地线上的寄生电阻引起的误差,马达电流的取样电阻 RS 接地的地线要单独设置,减小其他因素引起的误差。单独的地线最终要连接到星状分布的地线总线上,该连线要尽可能的短,对小阻值的 Rs,由于 Rs 上的压降 V=I*Rs 小于 0.5V, PCB 上的连线压降与 0.5V 的 电 压将显得不可忽视,这一点要考虑进去。


PCB 尽量避免使用测试转接插座,测试插座的连接电阻可能会改变 Rs 的大小,对电路造成误差。Rs 值的选择遵循下列公式:

 $Rs = 0.5/I_{TRIPmax}$

热保护: 当内部电路结温超过 150℃时,过温模块开始工作,关断内部多有驱动电路。过温保护电路只保护电路温度过高产生的问题,而不应对输出短路的情况产生影响。热关断的阈值窗口大小为 15℃。



LP package typical application and circuit layout

Pin Circuit Diagrams

Page 11 of 17

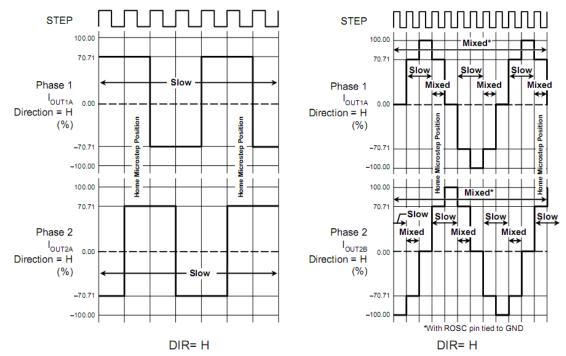
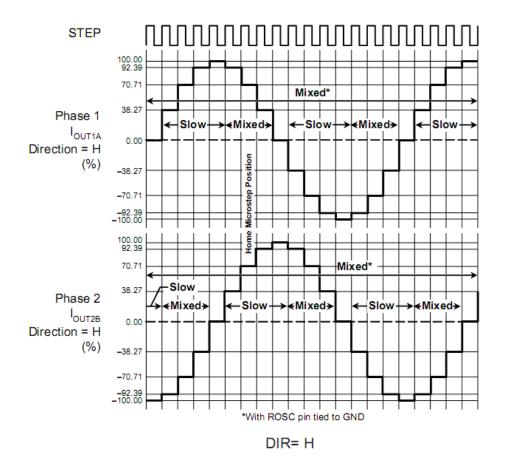
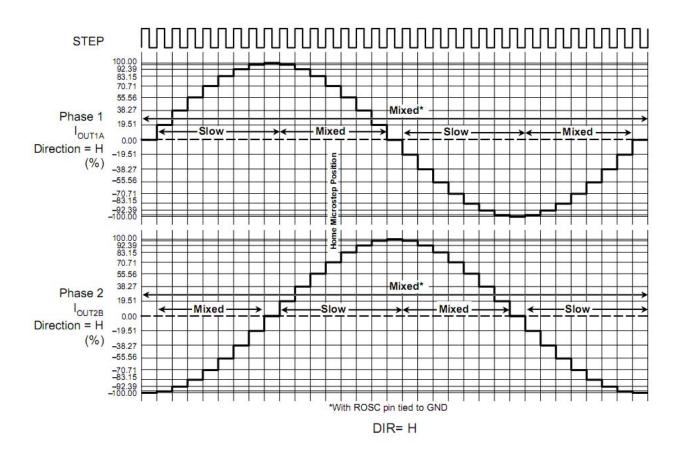



Figure 8. Decay Mode for Full-Step Increments

Figure 9. Decay Modes for Half-Step Increments

Page 12 of 17

Figure 10. Decay Modes for Quarter-Step Increments



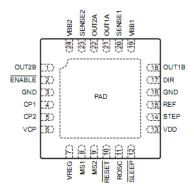
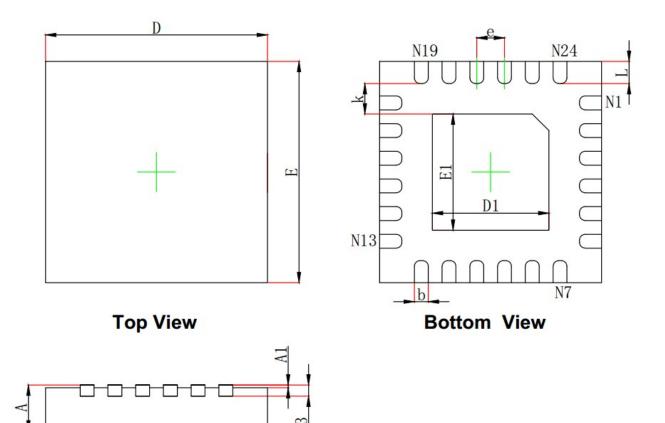

Figure 11. Decay Modes for Eighth-Step Increments

Table 2. Step Sequencing Settings

Home microstep position at Step Angle 45°; DIR = H

Full Step #	Half Step #	1/4 Step #	1/8 Step #	Phase 1 Current [% I _{tripMax}] (%)	Phase 2 Current [% I _{tripMax}] (%)	Step Angle (°)
	1	1	1	100.00	0.00	0.0
			2	98.08	19.51	11.3
		2	3	92.39	38.27	22.5
			4	83.15	55.56	33.8
1	2	3	5	70.71	70.71	45.0
			6	55.56	83.15	56.3
		4	7	38.27	92.39	67.5
			8	19.51	98.08	78.8
	3	5	9	0.00	100.00	90.0
			10	-19.51	98.08	101.3
		6	11	-38.27	92.39	112.5
			12	-55.56	83.15	123.8
2	4	7	13	-70.71	70.71	135.0
			14	-83.15	55.56	146.3
		8	15	-92.39	38.27	157.5
			16	-98.08	19.51	168.8
	5	9	17	-100.00	0.00	180.0
			18	-98.08	-19.51	191.3
		10	19	-92.39	-38.27	202.5
			20	-83.15	-55.56	213.8
3	6	11	21	-70.71	-70.71	225.0
			22	-55.56	-83.15	236.3
		12	23	-38.27	-92.39	247.5
			24	-19.51	-98.08	258.8
	7	13	25	0.00	-100.00	270.0
			26	19.51	-98.08	281.3
		14	27	38.27	-92.39	292.5
			28	55.56	-83.15	303.8
4	8	15	29	70.71	-70.71	315.0
			30	83.15	-55.56	326.3
		16	31	92.39	-38.27	337.5
			32	98.08	-19.51	348.8


Pin-out Diagrams

Terminal List Table

Number	Pin Name	Pin Description
4	CP1	Charge pump capacitor terminal
5	CP2	Charge pump capacitor terminal
17	DIR	Logic Input
2	\ENABLE	Logic Input
3,16	GND	Ground
8	MS1	Logic Input
9	MS2	Logic Input
21	OUT1A	DMOS Full Bridge 1 Output A
18	OUT1B	DMOS Full Bridge 1 Output B
22	OUT2A	DMOS Full Bridge 2 Output A
1	OUT2B	DMOS Full Bridge 2 Output B
15	REF	Gm reference voltage input
10	\RESET	Logic input
11	ROSC	Sense resistor for bridge 2
20	SENSE1	VBB2, the load supply for bridge 2
23	SENSE2	Logic Input
12	\SLEEP	Logic Input
14	STEP	Logic Input
19	VBB1	Load supply
24	VBB2	Load supply
6	VCP	Reservoir capacitor terminal
13	VDD	Logic supply
7	VREG	Regulator decoupling terminal

Page 15 of 17

Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.700/0.800	0.800/0.900	0. 028/0. 031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
Е	0. 203	REF	0.008	REF	
b	3. 924	4. 076	0. 154	0. 160	
С	3. 924	4. 076	0. 154	0. 160	
E1	2.000	2. 200	0.079	0. 089	
E2	2.000	2. 200	0.079	0. 089	
Α	0. 200	MIN	0.008	MIN	
A2	0. 200	0.300	0.008	0.012	
A1	0. 500	TYP	0. 020	TYP	
L	0. 324	0. 476	0.013	0.019	

Side View