

内置高效率自适应电荷泵升压,防削顶失真功能,D/AB切换的 5.2W单声道音频功率放大器

■ 特点

- ・4种防削顶失真功能(Anti-Clipping Function, ACF)
- 自适应电荷泵升压功能
- ・内部固定28dB増益
- 输出功率
 - 5.2W (V_{BAT}=4.2V, R_L=4Ω, THD+N=10%) 4.0W (V_{BAT}=3.7V, R_L=4Ω, THD+N=10%) 3.0W (V_{BAT}=3.3V, R_L=4Ω, THD+N=10%)
- · 效率 84% (V_{BAT}=3.7V, R_L=4Ω, 0.4W) 75% (V_{BAT}=3.7V, R_L=4Ω, 2W)
 · 电源
- --升压输入VBAT: 2.7V至5.5V -升压输出CPOUT: 6.4V
- ・静态工作电流: 3mA
- ・关断电流: <1uA
- ・AB/D类可切换
- ·免滤波器数字调制,直接驱动扬声器
- •保护功能:过流/过热/欠压异常保护功能
- ·无铅封装, SOP16L-PP, QFN16L-PP

■ 应用

- ・智能音响
- 便携式音频设备

・无线音响

智能手机

■ 典型应用图

■ 概述

HT8310 是 一 款 D 类 音 频 功 率 放 大 器 , 在 VBAT=4.2V、THD+N=10%,4Ω负载条件下能连续输 出5.2W功率。该D类功放的电源电压由内置的自适应 电荷泵升压模块提供。该升压模块在低功率时不升 压,可有效提升电池的播放时间。

HT8310的最大特点是防削顶失真(ACF)输出 控制功能,可检测并抑制由于输入音乐、语音信号幅 度过大所引起的输出信号削顶失真(破音),也能自 适应地防止在升压电压下降所造成的输出削顶,显著 提高音质,创造非常舒适的听音享受,并保护扬声器 免受过载损坏。其具有4种不同的ACF模式,可针对 不同应用场合。同时芯片还具有ACF-Off 模式。

HT8310具有AB类和D类的自由切换功能,在受到D类功放EMI干扰困扰时,可随时切换至AB类音频功放模式(此时电荷泵升压功能关闭)。

HT8310内部集成免滤波器数字调制技术,能够 直接驱动扬声器,并最大程度减小脉冲输出信号的失 真和噪音。输出无需滤波网络,极少的外部元器件节 省了系统空间和成本,是便携式应用的理想选择。

此外,HT8310内部固定28dB增益,内置的关断 功能使待机电流最小化,还集成了输出端过流保护、 片内过温保护和电源欠压异常保护等功能。

5.2W Anti-Clipping Mono Class D/AB Audio Amplifier with Adaptive Charge Pump Regulator

FEATURE

- 4 modes of Anti-Clipping Function (ACF)
- Adaptive Charge Pump Regulator
- Maximum Voltage Gain: 28dB
- Output Power
 - 5.2W (V_{BAT}=4.2V, R_L=4 Ω , THD+N=10%) 4.0W (V_{BAT}=3.7V, R_L=4 Ω , THD+N=10%)
 - 3.0W (V_{BAT}=3.3V, R_L=4Ω, THD+N=10%)
- Efficiency

84% (V_{BAT} = 3.7V, R_L = 4 Ω , Po = 0.4W) 75% (V_{BAT} = 3.7V, R_L = 4 Ω , Po = 2.0W)

- Power Supply
 - -Input VBAT: 2.7V to 5.5V
 - -Output CPOUT: 6.4V
- Quiescent Current: 3mA
- Shutdown Current: <1uA
- Class AB / Class D selectable
- · Filter-less Modulation, Eliminating Output Filter

Over Current Protection, Thermal Protection,

Low voltage malfunction prevention function included

• Pb-Free Packages , SOP16L-PP, QFN16L-PP

■ APPLICATIONS

- Smart Speakers
 Wireless Speakers
- Portable Audio Devices
 Smart Phones

TYPICAL APPLICATION

■ GENERAL DESCRIPTION

HT8310 is a Class D audio amplifier which can deliver continuous 5.2W output power into a 4Ω speaker with 4.2V battery supply when THD+N = 10%. The class D audio amplifier's power supply is adaptively boosted by the integrated charge pump regulator which only works while the output power is big enough. This will significantly extend the playing time in battery supply applications.

HT8310 features Anti-Clipping Function (ACF) which detects output signal clip due to the over input signal and suppresses the output signal clip automatically. Also, it can adapt the output clip caused by power supply voltage down. It can significantly improve the sound quality, creating a very comfortable musical enjoyment, and to protect the speakers from overload damage. It provides 4 different ACF modes and ACF OFF mode to adjust different applications.

Class AB amplifier mode is also available for HT8310. Once the EMI Interference from class D and Boost Converter becomes an annoying problem, HT8310 can be changed into Class AB mode.

HT8310 has a filter-less modulation circuit which directly drives speakers while realizes low distortion and low noise characteristics. Thanks to filter-less, circuit design with fewer external parts can be made in portable applications.

HT8310 has an internal gain of 28dB and an independent Shutdown function which can minimize the power consumption. As for protection function, over current protection function for speaker output terminals, over temperature protection function, and low supply voltage malfunction preventing function are also prepared.

QFN16L-PP Top View

■ TERMINAL CONFIGURATION

SOP16L-PP Top View

■ TERMINAL FUNCTION ¹

- 16	RIVIINAL	FUNCTION			
SOP Terminal No.	QFN Terminal No.	Name	I/O	ESD Protection	Description
0	/	GND	GND		Ground
1	15	PVBAT	POWER	PN	Power supply for the charge pump regulator
2	16	CP	I	PN	Flying capacitor positive terminal
3	1	CN	I	PN	Flying capacitor negative terminal
4	2	CGND	GND		Ground for the charge pump regulator
5	3	AGND	GND		Analog ground
6	4	ACF	I	PN	ACF selection terminal. ACF is disabled when it is pulled to VBAT directly.
7	5	CTRL	I	PN	Mode selection terminal. When it is pulled low, the device goes into shutdown mode.
8	6	AVBAT	POWER	PN	Analog power supply
9	7	IN+	I	PN	Positive audio input terminal
10	8	IN-	I	PN	Negative audio input terminal
11	9	BYPASS	Ο	PN	Analog reference terminal, connecting a 1uF capacitor to ground
12	10	OUT+	0	PN	Positive BTL audio output
13	11	PGND	GND		Power ground for audio amplifier
14	12	PVDD	POWER	PN	Power supply for audio amplifier
15	13	OUT-	0	PN	Negative BTL audio output
16	14	CPOUT	POWER	PN	Boosted voltage output of the charge pump regulator

ORDERING INFORMATION

Part Number	Package Type	Marking	Operating Temperature Range	Container/MOQ
HT8310SPT	SOP16L-PP	HT8310SP	-40℃~85℃	Tube/50PCS
HT8310SPR	SOP16L-PP	HT8310SP	-40°C∼85°C	Tape and Reel/2500PCS
HT8310SQR	QFN16L-PP	HT8310SQ	-40℃~85℃	Tape and Reel/5000PCS

• ELECTRICAL CHARACTERISTICS²

Absolute Maximum Ratings³

PARAMETER	SYMBOL	MIN	MAX	UNIT
Supply voltage range (PVBAT, AVBAT)	VBAT	-0.3	7	V
Input voltage range (IN+, IN-)	Vin	-0.6	AVBAT+0.6	V
Operating temperature range	TA	-40	85	°C
Operating junction temperature range	TJ	-40	150	°C
Storage temperature range	Tstg	-50	150	°C

• Recommended Operating Conditions

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply voltage range (PVBAT, AVBAT)	VBAT		2.7	2.7	5.5	V
Operating temperature range	Ta		-40	25	85	°C
Speaker resistance	R∟			4		Ω

• Electrical Specifications

General Specifications

Condition: VBAT = 2.7~5.5V, T_A = 25°C, Unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply voltage range (PVBAT, AVBAT)	VBAT		2.7	3.7	5.5	V
Power-up threshold voltage	Vuvlh			2.5		V
Power-off threshold voltage	Vuvll				2.4	V
Outereast ourset		3.6V, No input, No load, Class D		3.5		mA
Quescent current	Іват	3.6V, No input, No load, Class AB		6.5		mA
Shutdown current	I _{SD}			0.1	1	uA
Power ripple rejection ratio	PSRR	VBAT=3.7V, 217Hz		-80		dB
Input impedance per input pin	Rin			20		kΩ
Closed-loop voltage gain	Av			28.5		dB
		Shutdown mode	0		0.4	V
(PVBAT, AVBAT) Power-up threshold voltage Power-off threshold voltage Quiescent current Shutdown current Power ripple rejection ratio Input impedance per input pin Closed-loop voltage gain CTRL terminal setting threshold voltage	VCTRL	Class AB mode, Charge Pump disabled	1.1		1.5	V
		Class D mode, Charge Pump enabled	1.8		AVBAT	V
Start-up time ⁴	ton			120		ms
Over temperature protection point	OTP			160		°C

Charge Pump Specifications

Condition: VBAT = 2.7~5.5V, T_A = 25 $^\circ\!\mathrm{C}$, Unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Charge pump output voltage	CPOUT		6.2	6.4	6.6	V
Switching frequency	fsw_сн			1600		kHz
Max output current	ICPOUT	VBAT=4.2V		2		А

² Depending on parts and PCB layout, characteristics may be changed.

³ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

⁴ Power on, shutdown release, or the switching between Class AB and Class D

Class D Audio Amplifier Specifications

Condition: VBAT = 3.7V, $T_A = 25^{\circ}$ C, $C_{IN} = 1uF$, $R_{IN} = 0k$, Av = 28.5dB, $R_L = 4\Omega$, $f_{IN} = 1kHz$, $C_{VBAT} = 1uF//10uF//470uF$, $C_{OUT} = 1uF//10uF//470uF$, $C_{FLY} = 4.7uF$, ACF off, Unless otherwise specified.

PARAMETER	SYMBOL	CONE	DITION	MIN	TYP	MAX	UNIT
		VBAT=4.2V	THD+N = 10%		5.2		
		VDA1=4.2V	THD+N = 1%		4.3		
Output Bower	Po	VBAT=3.7V	THD+N = 10%		4		w
Output Power	FU	VBA1=3.7V	THD+N = 1%		3.6		vv
		VDAT-2 2V	THD+N = 10%		3		-
		VBAT=3.3V	THD+N = 1%		2.7		
Total Harmonic Distortion + Noise	THD+N	Po=1W R∟=4Ω, f=1kHz			0.06		%
Output Noise	VN	f=20Hz~20kHz, A weighted, Av=28.5dB			120		μVrms
Signal to Noise Ratio	SNR	f=20Hz~20kHz, Av=28.5dB, Po	•		84		dB
Offset Voltage	Vos				±10		mV
Efficiency	5	VBAT=3.7V, Po=0.4W			84		%
Efficiency	η	VBAT=3.7V, Po=2W			75		%
Switching frequency	f _{sw_D}				330		kHz

Class AB Audio Amplifier Specifications

Condition: VBAT = 3.7V, $T_A = 25^{\circ}C$, $C_{IN} = 1uF$, $R_{IN} = 0k$, Av = 28.5dB, $R_L = 4\Omega$, $f_{IN} = 1kHz$, $C_{VBAT} = 1uF//10uF//470uF$, $C_{OUT} = 1uF//10uF//470uF$, $C_{FLY} = 4.7uF$, ACF off, Unless otherwise specified.

PARAMETER	SYMBOL	CONDITION		MIN	TYP	MAX	UNIT
Output Power Total Harmonic Distortion + Noise Output Noise Signal to Noise Ratio Offset Voltage		VBAT=4.2V			2		
		VBAT=3.7V	f=1kHz, R∟=4Ω, THD+N=10%		1.5		
	PO	VBAT=3.3V			1.2		W
	FU	VBAT=4.2V			1.6		
		VBAT=3.7V	f=1kHz, R∟=4Ω, THD+N=1%		1.2		
		VBAT=3.3V			0.9		
	THD+N	PO=1W	RL=4Ω, f=1kHz		0.1		%
Output Noise	VN	f=20Hz~20kHz Av=28.5dB	z, A weighted,		120		μVrms
Signal to Noise Ratio	SNR	f=20Hz~20kHz, A weighted, Av=28.5dB, Po = 1W			84		dB
Offset Voltage	Vos				±10		mV
Efficiency	η	Po = 1W			63		%

TYPICAL OPERATING CHARACTERISTICS

f vs THD+N

Po vs THD+N

f_{IN} vs GAIN

f vs THD+N

APPLICATION INFORMATION

The HT8310 is a highly efficient 5.2W Class-D audio power amplifier with anti-clipping function (ACF) for applications of battery-powered portable devices. It integrates a filter-less Class-D audio amplifier with an adaptive charge pump regulator. It operates from 2.7V to 5.5V supply. When operating with a 4.2V supply voltage, the HT8310 can deliver into a 4Ω load a maximum output power up to 5.2W with 10% THD+N.

In HT8310, the power supply rail of the Class-D amplifier output stage is internally boosted and regulated at 6.4V by an adaptive charge pump regulator, allowing for a much louder audio output than a stand-alone one directly connected to the battery. It makes HT8310 an ideal audio solution for portable devices, which are powered by a single-cell lithium battery while requiring higher audio loudness.

The ft8310 features ACF to constantly monitor and safeguard the audio outputs against the boosted supply voltage, preventing output clipping distortion, excessive power dissipation, or hazardous speaker over-load. Once an over-level condition is detected, the ACF lowers the voltage gain of the audio amplifier proportionally to eliminate output clipping distortion while maintaining a maximum dynamic range of the audio outputs allowed by the boosted supply voltage. It provides 4 different ACF modes and ACF OFF mode to adjust different applications.

Class AB amplifier mode is also available for HT8310. Once the EMI Interference from class D and Boost Converter becomes an annoying problem, HT8310 can be changed into Class AB mode.

As specifically designed for portable device applications, the HT8310 incorporates a shutdown mode to minimize the power consumption by holding the CTRL pin to ground. It also includes comprehensive protection features against various operating faults such as over-current, over-temperature, and under-voltage for a safe and reliable operation.

1. Charge Pump Regulator

To allow for a much louder audio output, an integrated adaptive charge pump regulator is employed to boost PVDD, the power rail for the Class-D amplifier output stage. Whenever the audio outputs are higher than a prescribed level, the charge pump regulator will be activated to boost and regulate CPOUT at 6.4V. In this case, the charge pump regulator operates in the regulation mode. For a proper operation, the boosted voltage CPOUT generated by the charge pump regulator must be externally shorted to PVDD pins via a sufficiently wide metal trace on the system board.

On the other hand, when the audio outputs are less than a prescribed level for an extended period of time, the charge pump regulator will be de-biased and forced into the standby mode. In the standby mode, the amplifier output stage is powered directly by VBAT, the battery voltage, through an internal power switch. This adaptive nature of the charge pump regulator can greatly improve the power efficiency of HT8310 when playing audio and thus extends battery life.

1.1. Selection of Charge Pump Flying Capacitor (CFLY)

A nominal value of 4.7µF is recommended for the flying capacitors (between CP and CN) of the charge pump regulator. A low equivalent-series-resistance (ESR) ceramic capacitor, such as X7R or X5R, is recommended.

1.2. Selection of Charge Pump Output Capacitor (Cout)

For best performance, a 10μ F low ESR ceramic capacitor in parallel with a tantalum or electrolytic capacitor (220 μ F or higher) is recommended for the output capacitor (C_{OUT}) of the charge pump regulator.

2. Anti-Clipping Function (ACF) and Mode Configuration

Once the ACF function is enabled, HT8310 attenuates system gain to an appropriate value when an excessive input is applied, so as not to cause the clipping at the differential signal output. In this way, the output audio signal is controlled in order to obtain a maximum output level without distortion. And HT8310 also follows to the clips of the output waveform due to the decrease in the power-supply voltage.

Fig. 1 the ACF Function Operation Outline

The Attack time of ACF Function is a time interval until system gain falls to target attenuation gain -3dB when a big enough signal input. And, the Release Time is a time from target attenuation gain to not working of ACF. The maximum attenuation gain is 10dB. There are 4 different ACF modes with different attack time and release time, and ACF off mode.

Table 1 Attack time	and Release time
---------------------	------------------

ACF Terminal	ACF mode	Attack time	Release time
Directly pulled to GND	ACF1	50ms	300ms
Pulled to GND with a 100k resistor	ACF2	4ms	2s
Floating	ACF3	50ms	600ms
Pulled to VBAT with a 100k resistor	ACF4	50ms	75ms
Directly pulled to VBAT	ACF OFF	-	-

Notice that the ACF mode is only available in Class-D mode. If the device goes into Class-AB mode, the device will work in ACF off mode no matter how the ACF terminal is connecting.

3. Audio Amplifier Input Configuration

HT8310 is an amplifier with analog input (single-ended or differential). For a differential input between IN+ and IN- pins, signals input via DC-cut capacitors (C_{IN}). The input signal gain is calculated by

$$Av \approx 20^{10}(560 k/(20 K+R_{IN}))$$
.

And, the low pass cut-off frequency of input signal, can be calculated by

$$f_{c} = 1/(2\pi R_{IN}C_{IN})$$

For a single-ended input at IN+ pin, signal input via a DC-cut capacitor (C_{IN}). IN- pin should be connected

HT8310 Audio Amplifier Integrated with Charge Pump

to ground via a DC-cut capacitor (with the same value of C_{IN}). The Gain and low pass Cut-off frequency are the same as the above case.

Fig. 2 (1) Differential Input;

4. Working Mode Selection (CTRL Terminal)

HT8310 can work in different modes by setting the CTRL terminal, shown as follow.

MODE	SYMBOL	CTRL Voltage					
MODE	SIMBOL	MIN.	TYP.	MAX.	UNIT		
Class D mode with adaptive charge pump	V _{MOD1}	1.8	VBAT	VBAT	V		
Class AB mode in ACF-Off without charge pump	V _{MOD3}	1.1	1.3	1.5	V		
SD (Shutdown) Mode	V _{MOD4}	0	0	0.4	V		

Notice that there's no internal pull-up or pull-down resistor.

5. Pop-Click Noise Reduction

The Pop-Click Noise Reduction Function of HT8310 works in the cases of Power-on, Power-off, Shutdown on, and Shutdown off. To achieve a more excellent noise reduction performance, it is recommended to use a DC-cut capacitor (C_{IN}) of 0.1µF or less.

Besides, POP noise can be minimal according to the following procedure of shutdown control.

•During power-on, Shutdown mode is not cancelled until the power supply is stabilized enough.

·Before Power-off, set Shutdown mode first.

The pop-click noise: Power-on/-off > Shutdown on/off.

Fig. 3 Pop-Click Noise Reduction by Shutdown

6. Protection Function

HT8310 has the protection functions such as Over-Current Protection function, Thermal Protection function, and Low Voltage Malfunction Prevention function.

(1) Over-current Protection function

When a short circuit occurs between one output terminal and Ground, PVDD, or the other output, the over-current protection mode starts up. In the over current protection mode, the differential output terminal becomes a high impedance state. Once the short circuit conditions are eliminated, the over current protection mode can be cancelled automatically.

(2) Thermal Protection function

When excessive high temperature of HT8310 (160°C) is detected, the thermal protection mode starts up. In the thermal protection mode, the differential output terminal becomes Weak Low state (a state grounded through high impedance).

(3) Low voltage Malfunction Prevention function

This is the function to establish the low voltage protection mode when AVBAT terminal voltage becomes lower than the detection voltage (V_{UVLL}) for the low voltage malfunction prevention. And the protection mode is canceled when AVBAT terminal voltage becomes higher than the threshold voltage (VUVLH). In the low voltage protection mode, the differential output pin becomes Weak Low state (a state grounded through high impedance). HT8310 will start up within the start-up time (TON) when the low voltage protection mode is cancelled

7. Typical Application Circuits

8. Typical PCB Layout

■ PACKAGE OUTLINE

SOP16L-PP

Symbol	Size (mm)	
	MIN	MAX
Α	-	1.75
A1	0.05	0.15
A2	1.30	1.50
b	0.39	0.48
С	0.21	0.26
D	9.70	10.10
D1	4.57(REF)	
E	3.70	4.10
E1	5.80	6.20
E2	2.41(REF)	
е	1.27(BSC)	
L	0.50	0.80
θ	0°	8°

